This documentation is automatically generated by online-judge-tools/verification-helper
#include "data-structure/segtree/lazy-segtree.hpp"このライブラリを使う際には、MonoidAct 構造体をテンプレート引数に渡して使う必要がある。
MonoidAct 構造体は次のようなものを実装する必要がある:
template <class S, class F>
struct MonoidAct {
using value_type_S = S;
using value_type_F = F;
static S op(const S& l, const S& r);
static S e();
static S mapping(const F& f, const S& x);
static F composition(const F& f, const F& g);
static F id();
};
各メンバの使い方や型の意味は ac-library に準拠する
よく使うモノイドと作用素の組み合わせは data-structure/monoidact 以下にまとめる予定
#pragma once
#include <vector>
#include <cassert>
template<class MonoidAct> class LazySegtree {
public:
using S = typename MonoidAct::value_type_S;
using F = typename MonoidAct::value_type_F;
LazySegtree(): LazySegtree(0) {}
explicit LazySegtree(int n): LazySegtree(std::vector<S>(n, MonoidAct::e())) {}
explicit LazySegtree(const std::vector<S> &v): N((int)v.size()), sz(1), lg(0) {
while(sz < N) {
sz <<= 1;
lg++;
}
node.resize(sz * 2, MonoidAct::e());
lazy.resize(sz, MonoidAct::id());
for(int i = 0; i < N; i++) node[i + sz] = v[i];
for(int i = sz - 1; i >= 1; i--) update(i);
}
void set(int pos, S val) {
assert(0 <= pos && pos < N);
pos += sz;
for(int i = lg; i >= 1; i--) propagate(pos >> i);
node[pos] = val;
for(int i = 1; i <= lg; i++) update(pos >> i);
}
S get(int pos) {
assert(0 <= pos and pos < N);
pos += sz;
for(int i = lg; i >= 1; i--) propagate(pos >> i);
return node[pos];
}
S prod(int l, int r) {
assert(0 <= l and l <= r and r <= N);
if (l == r) return MonoidAct::e();
l += sz;
r += sz;
for(int i = lg; i >= 1; i--) {
if (((l >> i) << i) != l) propagate(l >> i);
if (((r >> i) << i) != r) propagate((r - 1) >> i);
}
S vl = MonoidAct::e(), vr = MonoidAct::e();
while(l < r) {
if (l & 1) vl = MonoidAct::op(vl, node[l++]);
if (r & 1) vr = MonoidAct::op(node[--r], vr);
l >>= 1;
r >>= 1;
}
return MonoidAct::op(vl, vr);
}
S all_prod() const { return node[1]; }
void apply(int pos, F f) {
assert(0 <= pos and pos < N);
pos += sz;
for(int i = lg; i >= 1; i--) propagate(pos >> i);
node[pos] = MonoidAct::mapping(f, node[pos]);
for(int i = 1; i <= lg; i++) update(pos >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l and l <= r and r <= N);
if (l == r) return;
l += sz;
r += sz;
for(int i = lg; i >= 1; i--) {
if (((l >> i) << i) != l) propagate(l >> i);
if (((r >> i) << i) != r) propagate((r - 1) >> i);
}
{
int tmp_l = l, tmp_r = r;
while(l < r) {
if (l & 1) apply_node(l++, f);
if (r & 1) apply_node(--r, f);
l >>= 1;
r >>= 1;
}
l = tmp_l, r = tmp_r;
}
for(int i = 1; i <= lg; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <class G> int max_right(int l, G g) {
assert(0 <= l and l <= N);
assert(g(MonoidAct::e()));
if (l == N) return N;
l += sz;
for(int i = lg; i >= 1; i--) propagate(l >> i);
S now = MonoidAct::e();
do {
while ((l & 1) == 0) l >>= 1;
if (!g(MonoidAct::op(now, node[l]))) {
while (l < sz) {
propagate(l);
l <<= 1;
if (g(MonoidAct::op(now, node[l]))) {
now = MonoidAct::op(now, node[l]);
l++;
}
}
return l - sz;
}
now = MonoidAct::op(now, node[l]);
l++;
} while ((l & -l) != l);
return N;
}
template <class G> int min_left(int r, G g) {
assert(0 <= r and r <= N);
assert(g(MonoidAct::e()));
if (r == 0) return 0;
r += sz;
for(int i = lg; i >= 1; i--) propagate((r - 1) >> i);
S now = MonoidAct::e();
do {
r--;
while (r > 1 and (r & 1) == 0) r >>= 1;
if (!g(MonoidAct::op(node[r], now))) {
while (r < sz) {
propagate(r);
r = (r << 1) + 1;
if (g(MonoidAct::op(node[r], now))) {
now = MonoidAct::op(node[r], now);
r--;
}
}
return r + 1 - sz;
}
now = MonoidAct::op(node[r], now);
} while((r & -r) != r);
return 0;
}
private:
int N, sz, lg;
std::vector<S> node;
std::vector<F> lazy;
void update(int i) {
node[i] = MonoidAct::op(node[i << 1], node[(i << 1) | 1]);
}
void apply_node(int i, F f) {
node[i] = MonoidAct::mapping(f, node[i]);
if (i < sz) lazy[i] = MonoidAct::composition(f, lazy[i]);
}
void propagate(int i) {
apply_node(i << 1, lazy[i]);
apply_node(i << 1 | 1, lazy[i]);
lazy[i] = MonoidAct::id();
}
};#line 2 "data-structure/segtree/lazy-segtree.hpp"
#include <vector>
#include <cassert>
template<class MonoidAct> class LazySegtree {
public:
using S = typename MonoidAct::value_type_S;
using F = typename MonoidAct::value_type_F;
LazySegtree(): LazySegtree(0) {}
explicit LazySegtree(int n): LazySegtree(std::vector<S>(n, MonoidAct::e())) {}
explicit LazySegtree(const std::vector<S> &v): N((int)v.size()), sz(1), lg(0) {
while(sz < N) {
sz <<= 1;
lg++;
}
node.resize(sz * 2, MonoidAct::e());
lazy.resize(sz, MonoidAct::id());
for(int i = 0; i < N; i++) node[i + sz] = v[i];
for(int i = sz - 1; i >= 1; i--) update(i);
}
void set(int pos, S val) {
assert(0 <= pos && pos < N);
pos += sz;
for(int i = lg; i >= 1; i--) propagate(pos >> i);
node[pos] = val;
for(int i = 1; i <= lg; i++) update(pos >> i);
}
S get(int pos) {
assert(0 <= pos and pos < N);
pos += sz;
for(int i = lg; i >= 1; i--) propagate(pos >> i);
return node[pos];
}
S prod(int l, int r) {
assert(0 <= l and l <= r and r <= N);
if (l == r) return MonoidAct::e();
l += sz;
r += sz;
for(int i = lg; i >= 1; i--) {
if (((l >> i) << i) != l) propagate(l >> i);
if (((r >> i) << i) != r) propagate((r - 1) >> i);
}
S vl = MonoidAct::e(), vr = MonoidAct::e();
while(l < r) {
if (l & 1) vl = MonoidAct::op(vl, node[l++]);
if (r & 1) vr = MonoidAct::op(node[--r], vr);
l >>= 1;
r >>= 1;
}
return MonoidAct::op(vl, vr);
}
S all_prod() const { return node[1]; }
void apply(int pos, F f) {
assert(0 <= pos and pos < N);
pos += sz;
for(int i = lg; i >= 1; i--) propagate(pos >> i);
node[pos] = MonoidAct::mapping(f, node[pos]);
for(int i = 1; i <= lg; i++) update(pos >> i);
}
void apply(int l, int r, F f) {
assert(0 <= l and l <= r and r <= N);
if (l == r) return;
l += sz;
r += sz;
for(int i = lg; i >= 1; i--) {
if (((l >> i) << i) != l) propagate(l >> i);
if (((r >> i) << i) != r) propagate((r - 1) >> i);
}
{
int tmp_l = l, tmp_r = r;
while(l < r) {
if (l & 1) apply_node(l++, f);
if (r & 1) apply_node(--r, f);
l >>= 1;
r >>= 1;
}
l = tmp_l, r = tmp_r;
}
for(int i = 1; i <= lg; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
template <class G> int max_right(int l, G g) {
assert(0 <= l and l <= N);
assert(g(MonoidAct::e()));
if (l == N) return N;
l += sz;
for(int i = lg; i >= 1; i--) propagate(l >> i);
S now = MonoidAct::e();
do {
while ((l & 1) == 0) l >>= 1;
if (!g(MonoidAct::op(now, node[l]))) {
while (l < sz) {
propagate(l);
l <<= 1;
if (g(MonoidAct::op(now, node[l]))) {
now = MonoidAct::op(now, node[l]);
l++;
}
}
return l - sz;
}
now = MonoidAct::op(now, node[l]);
l++;
} while ((l & -l) != l);
return N;
}
template <class G> int min_left(int r, G g) {
assert(0 <= r and r <= N);
assert(g(MonoidAct::e()));
if (r == 0) return 0;
r += sz;
for(int i = lg; i >= 1; i--) propagate((r - 1) >> i);
S now = MonoidAct::e();
do {
r--;
while (r > 1 and (r & 1) == 0) r >>= 1;
if (!g(MonoidAct::op(node[r], now))) {
while (r < sz) {
propagate(r);
r = (r << 1) + 1;
if (g(MonoidAct::op(node[r], now))) {
now = MonoidAct::op(node[r], now);
r--;
}
}
return r + 1 - sz;
}
now = MonoidAct::op(node[r], now);
} while((r & -r) != r);
return 0;
}
private:
int N, sz, lg;
std::vector<S> node;
std::vector<F> lazy;
void update(int i) {
node[i] = MonoidAct::op(node[i << 1], node[(i << 1) | 1]);
}
void apply_node(int i, F f) {
node[i] = MonoidAct::mapping(f, node[i]);
if (i < sz) lazy[i] = MonoidAct::composition(f, lazy[i]);
}
void propagate(int i) {
apply_node(i << 1, lazy[i]);
apply_node(i << 1 | 1, lazy[i]);
lazy[i] = MonoidAct::id();
}
};