This documentation is automatically generated by online-judge-tools/verification-helper
#include "data-structure/segtree/li-chao-tree.hpp"
#pragma once
#include <algorithm>
#include <cassert>
#include <utility>
#include <vector>
template <typename T, T inf>
class LiChaoTree {
public:
LiChaoTree() = default;
explicit LiChaoTree(const std::vector<T>& x): xs(x) {
std::sort(xs.begin(), xs.end());
xs.erase(std::unique(xs.begin(), xs.end()), xs.end());
n = (int)xs.size();
sz = 1;
while(sz < n) sz <<= 1;
while((int)xs.size() < sz) xs.emplace_back(xs.back() + 1);
node.resize(sz * 2, Line(T(0), inf));
}
// 直線 ax + b を追加
void add_line(T a, T b) {
update(a, b, 0, sz, 1);
}
// 線分 ax + b (x_l <= x < x_r) を追加
void add_segment(T a, T b, T x_l, T x_r) {
int l = std::lower_bound(xs.begin(), xs.end(), x_l) - xs.begin();
int r = std::lower_bound(xs.begin(), xs.end(), x_r) - xs.begin();
l += sz;
r += sz;
int width = 1, seg_idx_left = sz;
while(l < r) {
if(l & 1) {
int L = (l - seg_idx_left) * width;
int R = L + width;
update(a, b, L, R, l);
l++;
}
if(r & 1) {
r--;
int L = (r - seg_idx_left) * width;
int R = L + width;
update(a, b, L, R, r);
}
l >>= 1;
r >>= 1;
width <<= 1;
seg_idx_left >>= 1;
}
}
// min_{i} (a_i * x + b) を求める
T get_min(T x) {
int pos = std::lower_bound(xs.begin(), xs.end(), x) - xs.begin();
assert(0 <= pos and pos < sz);
pos += sz;
T ret = node[pos].eval(x);
while(pos > 1) {
pos >>= 1;
ret = std::min(ret, node[pos].eval(x));
}
return ret;
}
private:
struct Line {
T a, b;
Line(T a, T b): a(a), b(b) {}
inline T eval(T x) const { return (a * x + b); }
};
std::vector<T> xs;
std::vector<Line> node;
int n, sz;
void update(T a, T b, int l, int r, int pos) {
Line new_line(a, b);
while(1) {
bool is_over_l = (new_line.eval(xs[l]) >= node[pos].eval(xs[l]));
bool is_over_r = (new_line.eval(xs[r-1]) >= node[pos].eval(xs[r-1]));
if(is_over_l == is_over_r) {
if(!is_over_l) node[pos] = new_line;
break;
}
int mid = (l + r) >> 1;
bool is_over_mid = (new_line.eval(xs[mid]) >= node[pos].eval(xs[mid]));
if(!is_over_l and is_over_r) {
if(is_over_mid) {
r = mid;
pos = (pos << 1);
} else {
std::swap(new_line, node[pos]);
l = mid;
pos = (pos << 1) | 1;
}
} else {
if(is_over_mid) {
l = mid;
pos = (pos << 1) | 1;
} else {
std::swap(new_line, node[pos]);
r = mid;
pos = (pos << 1);
}
}
}
}
};
#line 2 "data-structure/segtree/li-chao-tree.hpp"
#include <algorithm>
#include <cassert>
#include <utility>
#include <vector>
template <typename T, T inf>
class LiChaoTree {
public:
LiChaoTree() = default;
explicit LiChaoTree(const std::vector<T>& x): xs(x) {
std::sort(xs.begin(), xs.end());
xs.erase(std::unique(xs.begin(), xs.end()), xs.end());
n = (int)xs.size();
sz = 1;
while(sz < n) sz <<= 1;
while((int)xs.size() < sz) xs.emplace_back(xs.back() + 1);
node.resize(sz * 2, Line(T(0), inf));
}
// 直線 ax + b を追加
void add_line(T a, T b) {
update(a, b, 0, sz, 1);
}
// 線分 ax + b (x_l <= x < x_r) を追加
void add_segment(T a, T b, T x_l, T x_r) {
int l = std::lower_bound(xs.begin(), xs.end(), x_l) - xs.begin();
int r = std::lower_bound(xs.begin(), xs.end(), x_r) - xs.begin();
l += sz;
r += sz;
int width = 1, seg_idx_left = sz;
while(l < r) {
if(l & 1) {
int L = (l - seg_idx_left) * width;
int R = L + width;
update(a, b, L, R, l);
l++;
}
if(r & 1) {
r--;
int L = (r - seg_idx_left) * width;
int R = L + width;
update(a, b, L, R, r);
}
l >>= 1;
r >>= 1;
width <<= 1;
seg_idx_left >>= 1;
}
}
// min_{i} (a_i * x + b) を求める
T get_min(T x) {
int pos = std::lower_bound(xs.begin(), xs.end(), x) - xs.begin();
assert(0 <= pos and pos < sz);
pos += sz;
T ret = node[pos].eval(x);
while(pos > 1) {
pos >>= 1;
ret = std::min(ret, node[pos].eval(x));
}
return ret;
}
private:
struct Line {
T a, b;
Line(T a, T b): a(a), b(b) {}
inline T eval(T x) const { return (a * x + b); }
};
std::vector<T> xs;
std::vector<Line> node;
int n, sz;
void update(T a, T b, int l, int r, int pos) {
Line new_line(a, b);
while(1) {
bool is_over_l = (new_line.eval(xs[l]) >= node[pos].eval(xs[l]));
bool is_over_r = (new_line.eval(xs[r-1]) >= node[pos].eval(xs[r-1]));
if(is_over_l == is_over_r) {
if(!is_over_l) node[pos] = new_line;
break;
}
int mid = (l + r) >> 1;
bool is_over_mid = (new_line.eval(xs[mid]) >= node[pos].eval(xs[mid]));
if(!is_over_l and is_over_r) {
if(is_over_mid) {
r = mid;
pos = (pos << 1);
} else {
std::swap(new_line, node[pos]);
l = mid;
pos = (pos << 1) | 1;
}
} else {
if(is_over_mid) {
l = mid;
pos = (pos << 1) | 1;
} else {
std::swap(new_line, node[pos]);
r = mid;
pos = (pos << 1);
}
}
}
}
};