This documentation is automatically generated by online-judge-tools/verification-helper
#include "graph/tree/lca.hpp"
ダブリングによる実装。
HL分解でLCAを求める方が早いような気がするので、これが必要かどうかは不明。
#pragma once
#include <cmath>
#include <vector>
#include "../graph_template.hpp"
template <typename Cost = int> class LCA {
public:
LCA() = default;
explicit LCA(const Graph<Cost> &G, int root = 0)
: G(G), root(root), LOG((int)log2(G.size()) + 1), depth(G.size()),
parent(LOG, std::vector<int>(G.size())) {
dfs(root, -1, 0);
for(int k = 0; k + 1 < LOG; k++) {
for(int i = 0; i < (int)G.size(); i++) {
if(parent[k][i] < 0) {
parent[k + 1][i] = -1;
} else {
parent[k + 1][i] = parent[k][parent[k][i]];
}
}
}
}
int get_lca(int u, int v) {
if(depth[u] > depth[v]) std::swap(u, v);
for(int k = 0; k < LOG; k++) {
if((depth[u] - depth[v]) >> k & 1) v = parent[k][v];
}
if(u == v) return u;
for(int k = LOG - 1; k >= 0; k--) {
if(parent[k][u] != parent[k][v]) {
u = parent[k][u];
v = parent[k][v];
}
}
return parent[0][u];
}
int get_dist(int u, int v) {
return (depth[u] + depth[v] - 2 * depth[get_lca(u, v)]);
}
private:
Graph<Cost> G;
const int root;
const int LOG;
std::vector<int> depth;
std::vector<std::vector<int>> parent;
void dfs(int u, int p, int d) {
depth[u] = d;
parent[0][u] = p;
for(int v : G[u]) {
if(v == p) continue;
dfs(v, u, d + 1);
}
}
};
#line 2 "graph/tree/lca.hpp"
#include <cmath>
#include <vector>
#line 2 "graph/graph_template.hpp"
#include <cassert>
#line 5 "graph/graph_template.hpp"
template <typename Cost = int> struct Edge {
int from, to;
Cost cost;
int id;
Edge() = default;
explicit Edge(int from, int to, Cost cost = 1, int id = -1)
: from(from), to(to), cost(cost), id(id) {}
operator int() const { return to; }
};
template <typename Cost = int> class Graph {
public:
Graph() = default;
explicit Graph(int N) : N(N), M(0), G(N) {}
inline void add_directed_edge(int from, int to, Cost cost = 1) {
assert(0 <= from && from < N);
assert(0 <= to && to < N);
G[from].emplace_back(from, to, cost, M++);
}
inline void add_undirected_edge(int from, int to, Cost cost = 1) {
assert(0 <= from && from < N);
assert(0 <= to && to < N);
G[from].emplace_back(from, to, cost, M);
G[to].emplace_back(to, from, cost, M++);
}
inline size_t size() const { return G.size(); }
inline std::vector<Edge<Cost>> &operator[](const int &i) { return G[i]; }
inline const std::vector<Edge<Cost>> &operator[](const int &i) const {
return G[i];
}
protected:
int N, M;
std::vector<std::vector<Edge<Cost>>> G;
};
template <class Cost = int> using Edges = std::vector<Edge<Cost>>;
#line 7 "graph/tree/lca.hpp"
template <typename Cost = int> class LCA {
public:
LCA() = default;
explicit LCA(const Graph<Cost> &G, int root = 0)
: G(G), root(root), LOG((int)log2(G.size()) + 1), depth(G.size()),
parent(LOG, std::vector<int>(G.size())) {
dfs(root, -1, 0);
for(int k = 0; k + 1 < LOG; k++) {
for(int i = 0; i < (int)G.size(); i++) {
if(parent[k][i] < 0) {
parent[k + 1][i] = -1;
} else {
parent[k + 1][i] = parent[k][parent[k][i]];
}
}
}
}
int get_lca(int u, int v) {
if(depth[u] > depth[v]) std::swap(u, v);
for(int k = 0; k < LOG; k++) {
if((depth[u] - depth[v]) >> k & 1) v = parent[k][v];
}
if(u == v) return u;
for(int k = LOG - 1; k >= 0; k--) {
if(parent[k][u] != parent[k][v]) {
u = parent[k][u];
v = parent[k][v];
}
}
return parent[0][u];
}
int get_dist(int u, int v) {
return (depth[u] + depth[v] - 2 * depth[get_lca(u, v)]);
}
private:
Graph<Cost> G;
const int root;
const int LOG;
std::vector<int> depth;
std::vector<std::vector<int>> parent;
void dfs(int u, int p, int d) {
depth[u] = d;
parent[0][u] = p;
for(int v : G[u]) {
if(v == p) continue;
dfs(v, u, d + 1);
}
}
};