This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/2821"
#include "../../template/template.cpp"
#include "../../graph/tree/tree-hash.hpp"
int main() {
INT(N1, M1);
Graph<int> G1(N1);
for(int i = 0; i < M1; i++) {
INT(a, b);
a--;
b--;
G1.add_undirected_edge(a, b);
}
INT(N2);
TreeHash<int> G2(N2);
for(int i = 0; i < N2 - 1; i++) {
INT(a, b);
a--;
b--;
G2.add_edge(a, b);
}
auto g2hash = G2.get_hash();
int ans = 0;
vector<bool> used(N1, false);
for(int i = 0; i < N1; i++) {
if(!used[i]) {
map<int, int> toid;
int sz = 0;
auto dfs1 = [&](auto &&dfs1, int v, int p, int &k) -> void {
used[v] = true;
toid[v] = k++;
for(const auto& e : G1[v]) {
if(e.to != p) {
dfs1(dfs1, e.to, v, k);
}
}
};
dfs1(dfs1, i, -1, sz);
TreeHash<int> g1(sz);
auto dfs2 = [&](auto &&dfs2, int v, int p) -> void {
for(const auto& e : G1[v]) {
if(e.to == p) {
continue;
}
g1.add_edge(toid[e.to], toid[v]);
dfs2(dfs2, e.to, v);
}
};
dfs2(dfs2, i, -1);
auto g1hash = g1.get_hash();
ans += (g1hash == g2hash);
}
}
print(ans);
}
#line 1 "test/aoj/aoj2821.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/2821"
#line 1 "template/template.cpp"
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
// input output utils
namespace siro53_io {
// https://maspypy.github.io/library/other/io_old.hpp
struct has_val_impl {
template <class T>
static auto check(T &&x) -> decltype(x.val(), std::true_type{});
template <class T> static auto check(...) -> std::false_type;
};
template <class T>
class has_val : public decltype(has_val_impl::check<T>(std::declval<T>())) {
};
// debug
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void dump(const T t) {
cerr << t;
}
template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
void dump(const T t) {
cerr << t;
}
template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
void dump(const T &t) {
cerr << t.val();
}
void dump(__int128_t n) {
if(n == 0) {
cerr << '0';
return;
} else if(n < 0) {
cerr << '-';
n = -n;
}
string s;
while(n > 0) {
s += (char)('0' + n % 10);
n /= 10;
}
reverse(s.begin(), s.end());
cerr << s;
}
void dump(const string &s) { cerr << s; }
void dump(const char *s) {
int n = (int)strlen(s);
for(int i = 0; i < n; i++) cerr << s[i];
}
template <class T1, class T2> void dump(const pair<T1, T2> &p) {
cerr << '(';
dump(p.first);
cerr << ',';
dump(p.second);
cerr << ')';
}
template <class T> void dump(const vector<T> &v) {
cerr << '{';
for(int i = 0; i < (int)v.size(); i++) {
dump(v[i]);
if(i < (int)v.size() - 1) cerr << ',';
}
cerr << '}';
}
template <class T> void dump(const set<T> &s) {
cerr << '{';
for(auto it = s.begin(); it != s.end(); it++) {
dump(*it);
if(next(it) != s.end()) cerr << ',';
}
cerr << '}';
}
template <class Key, class Value> void dump(const map<Key, Value> &mp) {
cerr << '{';
for(auto it = mp.begin(); it != mp.end(); it++) {
dump(*it);
if(next(it) != mp.end()) cerr << ',';
}
cerr << '}';
}
template <class Key, class Value>
void dump(const unordered_map<Key, Value> &mp) {
cerr << '{';
for(auto it = mp.begin(); it != mp.end(); it++) {
dump(*it);
if(next(it) != mp.end()) cerr << ',';
}
cerr << '}';
}
template <class T> void dump(const deque<T> &v) {
cerr << '{';
for(int i = 0; i < (int)v.size(); i++) {
dump(v[i]);
if(i < (int)v.size() - 1) cerr << ',';
}
cerr << '}';
}
template <class T> void dump(queue<T> q) {
cerr << '{';
while(!q.empty()) {
dump(q.front());
if((int)q.size() > 1) cerr << ',';
q.pop();
}
cerr << '}';
}
void debug_print() { cerr << endl; }
template <class Head, class... Tail>
void debug_print(const Head &h, const Tail &...t) {
dump(h);
if(sizeof...(Tail)) dump(' ');
debug_print(t...);
}
// print
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void print_single(const T t) {
cout << t;
}
template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
void print_single(const T t) {
cout << t;
}
template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
void print_single(const T t) {
cout << t.val();
}
void print_single(__int128_t n) {
if(n == 0) {
cout << '0';
return;
} else if(n < 0) {
cout << '-';
n = -n;
}
string s;
while(n > 0) {
s += (char)('0' + n % 10);
n /= 10;
}
reverse(s.begin(), s.end());
cout << s;
}
void print_single(const string &s) { cout << s; }
void print_single(const char *s) {
int n = (int)strlen(s);
for(int i = 0; i < n; i++) cout << s[i];
}
template <class T1, class T2> void print_single(const pair<T1, T2> &p) {
print_single(p.first);
cout << ' ';
print_single(p.second);
}
template <class T> void print_single(const vector<T> &v) {
for(int i = 0; i < (int)v.size(); i++) {
print_single(v[i]);
if(i < (int)v.size() - 1) cout << ' ';
}
}
template <class T> void print_single(const set<T> &s) {
for(auto it = s.begin(); it != s.end(); it++) {
print_single(*it);
if(next(it) != s.end()) cout << ' ';
}
}
template <class T> void print_single(const deque<T> &v) {
for(int i = 0; i < (int)v.size(); i++) {
print_single(v[i]);
if(i < (int)v.size() - 1) cout << ' ';
}
}
template <class T> void print_single(queue<T> q) {
while(!q.empty()) {
print_single(q.front());
if((int)q.size() > 1) cout << ' ';
q.pop();
}
}
void print() { cout << '\n'; }
template <class Head, class... Tail>
void print(const Head &h, const Tail &...t) {
print_single(h);
if(sizeof...(Tail)) print_single(' ');
print(t...);
}
// input
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void input_single(T &t) {
cin >> t;
}
template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
void input_single(T &t) {
cin >> t;
}
template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
void input_single(T &t) {
cin >> t;
}
void input_single(__int128_t &n) {
string s;
cin >> s;
if(s == "0") {
n = 0;
return;
}
bool is_minus = false;
if(s[0] == '-') {
s = s.substr(1);
is_minus = true;
}
n = 0;
for(int i = 0; i < (int)s.size(); i++) n = n * 10 + (int)(s[i] - '0');
if(is_minus) n = -n;
}
void input_single(string &s) { cin >> s; }
template <class T1, class T2> void input_single(pair<T1, T2> &p) {
input_single(p.first);
input_single(p.second);
}
template <class T> void input_single(vector<T> &v) {
for(auto &e : v) input_single(e);
}
void input() {}
template <class Head, class... Tail> void input(Head &h, Tail &...t) {
input_single(h);
input(t...);
}
}; // namespace siro53_io
#ifdef DEBUG
#define debug(...) \
cerr << __LINE__ << " [" << #__VA_ARGS__ << "]: ", debug_print(__VA_ARGS__)
#else
#define debug(...) (void(0))
#endif
// io setup
struct Setup {
Setup() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
}
} __Setup;
using namespace siro53_io;
// types
using ll = long long;
using i128 = __int128_t;
// input macros
#define INT(...) \
int __VA_ARGS__; \
input(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
input(__VA_ARGS__)
#define STRING(...) \
string __VA_ARGS__; \
input(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
input(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
input(__VA_ARGS__)
#define LD(...) \
long double __VA_ARGS__; \
input(__VA_ARGS__)
#define UINT(...) \
unsigned int __VA_ARGS__; \
input(__VA_ARGS__)
#define ULL(...) \
unsigned long long __VA_ARGS__; \
input(__VA_ARGS__)
#define VEC(name, type, len) \
vector<type> name(len); \
input(name);
#define VEC2(name, type, len1, len2) \
vector name(len1, vector<type>(len2)); \
input(name);
// other macros
// https://trap.jp/post/1224/
#define OVERLOAD3(_1, _2, _3, name, ...) name
#define ALL(v) (v).begin(), (v).end()
#define RALL(v) (v).rbegin(), (v).rend()
#define REP1(i, n) for(int i = 0; i < int(n); i++)
#define REP2(i, a, b) for(int i = (a); i < int(b); i++)
#define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define SORT(v) sort(ALL(v))
#define RSORT(v) sort(RALL(v))
#define UNIQUE(v) \
sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end()), v.shrink_to_fit()
#define REV(v) reverse(ALL(v))
#define SZ(v) ((int)(v).size())
#define MIN(v) (*min_element(ALL(v)))
#define MAX(v) (*max_element(ALL(v)))
// util const
const int INF = 1 << 30;
const ll LLINF = 1LL << 60;
constexpr int MOD = 1000000007;
constexpr int MOD2 = 998244353;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
// util functions
void Case(int i) { cout << "Case #" << i << ": "; }
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
template <class T> inline bool chmax(T &a, T b) {
return (a < b ? a = b, true : false);
}
template <class T> inline bool chmin(T &a, T b) {
return (a > b ? a = b, true : false);
}
template <class T, int dim>
auto make_vector_impl(vector<int>& sizes, const T &e) {
if constexpr(dim == 1) {
return vector(sizes[0], e);
} else {
int n = sizes[dim - 1];
sizes.pop_back();
return vector(n, make_vector_impl<T, dim - 1>(sizes, e));
}
}
template <class T, int dim>
auto make_vector(const int (&sizes)[dim], const T &e = T()) {
vector<int> s(dim);
for(int i = 0; i < dim; i++) s[i] = sizes[dim - i - 1];
return make_vector_impl<T, dim>(s, e);
}
vector<int> iota_gen(int n, int start = 0) {
vector<int> ord(n);
iota(ord.begin(), ord.end(), start);
return ord;
}
template<typename T>
vector<int> ord_sort(const vector<T>& v, bool greater = false) {
auto ord = iota_gen((int)v.size());
sort(ALL(ord), [&](int i, int j) {
if(greater) return v[i] > v[j];
return v[i] < v[j];
});
return ord;
}
#pragma endregion Macros
#line 2 "graph/tree/tree-hash.hpp"
#line 2 "random/rng.hpp"
#line 5 "random/rng.hpp"
class RNG32 {
public:
RNG32() : mt(std::chrono::steady_clock::now().time_since_epoch().count()) {}
// [l, r)
int randint(int l, int r) {
std::uniform_int_distribution<int> dist(l, r - 1);
return dist(mt);
}
int randint(int r) { return randint(0, r); }
private:
std::mt19937 mt;
};
class RNG64 {
public:
RNG64() : mt(std::chrono::steady_clock::now().time_since_epoch().count()) {}
// [l, r)
long long randint(long long l, long long r) {
std::uniform_int_distribution<long long> dist(l, r - 1);
return dist(mt);
}
long long randint(long long r) { return randint(0, r); }
private:
std::mt19937_64 mt;
};
class RNG_0_1 {
public:
RNG_0_1() : mt(std::chrono::steady_clock::now().time_since_epoch().count()) {}
// [0.0, 1.0)
double rand() {
auto bits = mt() >> 11;
return (double)bits / denomitor;
}
auto operator()() { return rand(); }
private:
std::mt19937_64 mt;
const double denomitor = 1LL << 53;
};
#line 2 "graph/tree/diameter.hpp"
#line 6 "graph/tree/diameter.hpp"
#line 2 "graph/graph_template.hpp"
#line 5 "graph/graph_template.hpp"
template <typename Cost = int> struct Edge {
int from, to;
Cost cost;
int id;
Edge() = default;
explicit Edge(int from, int to, Cost cost = 1, int id = -1)
: from(from), to(to), cost(cost), id(id) {}
operator int() const { return to; }
};
template <typename Cost = int> class Graph {
public:
Graph() = default;
explicit Graph(int N) : N(N), M(0), G(N) {}
inline void add_directed_edge(int from, int to, Cost cost = 1) {
assert(0 <= from && from < N);
assert(0 <= to && to < N);
G[from].emplace_back(from, to, cost, M++);
}
inline void add_undirected_edge(int from, int to, Cost cost = 1) {
assert(0 <= from && from < N);
assert(0 <= to && to < N);
G[from].emplace_back(from, to, cost, M);
G[to].emplace_back(to, from, cost, M++);
}
inline size_t size() const { return G.size(); }
inline std::vector<Edge<Cost>> &operator[](const int &i) { return G[i]; }
inline const std::vector<Edge<Cost>> &operator[](const int &i) const {
return G[i];
}
protected:
int N, M;
std::vector<std::vector<Edge<Cost>>> G;
};
template <class Cost = int> using Edges = std::vector<Edge<Cost>>;
#line 8 "graph/tree/diameter.hpp"
template <typename Cost = int>
std::pair<Cost, std::vector<int>> get_diameter(const Graph<Cost> &G) {
std::vector<Cost> depth(G.size());
std::vector<int> par(G.size(), -1);
auto dfs = [&](auto &&self, int u, int p, Cost d) -> void {
depth[u] = d;
par[u] = p;
for(const auto &e : G[u]) {
if(e.to == p) continue;
self(self, e.to, u, d + e.cost);
}
};
dfs(dfs, 0, -1, 0);
int from = std::max_element(depth.begin(), depth.end()) - depth.begin();
dfs(dfs, from, -1, 0);
int to = std::max_element(depth.begin(), depth.end()) - depth.begin();
std::vector<int> path = {to};
while(1) {
int nxt = par[path.back()];
if(nxt == -1) break;
path.push_back(nxt);
}
return std::make_pair(depth[to], path);
}
#line 5 "graph/tree/tree-hash.hpp"
template <typename Cost = int> class TreeHash {
public:
explicit TreeHash(int n) : G(n) {
RNG64 rng;
for(int i = 0; i < n; i++) rnd.push_back(rng.randint(1, mod - 1));
}
explicit TreeHash(const Graph<Cost> &g) : G(g) {
RNG64 rng;
for(int i = 0; i < (int)G.size(); i++)
rnd.push_back(rng.randint(1, mod - 1));
}
inline void add_edge(int from, int to, Cost cost = 1) {
G.add_undirected_edge(from, to, cost);
}
unsigned long long get_hash() {
auto [_, path] = get_diameter(G);
int len = (int)path.size();
std::vector<int> cent;
if(len & 1) {
cent = {path[len / 2]};
} else {
cent = {path[len / 2], path[len / 2 - 1]};
}
unsigned long long res = std::numeric_limits<unsigned long long>::max();
for(const int &root : cent) {
std::vector<unsigned long long> hashed(G.size(), 1);
hash_dfs(root, -1, 0, hashed);
res = std::min(res, hashed[root]);
}
return res;
}
private:
Graph<Cost> G;
static constexpr unsigned long long mod = (1ULL << 61) - 1;
static inline std::vector<unsigned long long> rnd;
inline unsigned long long add(unsigned long long a, unsigned long long b) {
if((a += b) >= mod) a -= mod;
return a;
}
inline unsigned long long mul(unsigned long long a, unsigned long long b) {
__uint128_t t = a;
t *= b;
unsigned long long na = t >> 61;
unsigned long long nb = t & mod;
if((na += nb) >= mod) na -= mod;
return na;
}
unsigned long long hash_dfs(int v, int p, int d,
std::vector<unsigned long long> &res) {
for(const auto &e : G[v]) {
if(e.to != p) {
res[v] = mul(res[v], hash_dfs(e.to, v, d + 1, res));
}
}
return res[v] = add(res[v], rnd[d]);
}
};
#line 4 "test/aoj/aoj2821.test.cpp"
int main() {
INT(N1, M1);
Graph<int> G1(N1);
for(int i = 0; i < M1; i++) {
INT(a, b);
a--;
b--;
G1.add_undirected_edge(a, b);
}
INT(N2);
TreeHash<int> G2(N2);
for(int i = 0; i < N2 - 1; i++) {
INT(a, b);
a--;
b--;
G2.add_edge(a, b);
}
auto g2hash = G2.get_hash();
int ans = 0;
vector<bool> used(N1, false);
for(int i = 0; i < N1; i++) {
if(!used[i]) {
map<int, int> toid;
int sz = 0;
auto dfs1 = [&](auto &&dfs1, int v, int p, int &k) -> void {
used[v] = true;
toid[v] = k++;
for(const auto& e : G1[v]) {
if(e.to != p) {
dfs1(dfs1, e.to, v, k);
}
}
};
dfs1(dfs1, i, -1, sz);
TreeHash<int> g1(sz);
auto dfs2 = [&](auto &&dfs2, int v, int p) -> void {
for(const auto& e : G1[v]) {
if(e.to == p) {
continue;
}
g1.add_edge(toid[e.to], toid[v]);
dfs2(dfs2, e.to, v);
}
};
dfs2(dfs2, i, -1);
auto g1hash = g1.get_hash();
ans += (g1hash == g2hash);
}
}
print(ans);
}