This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/segment_add_get_min"
#include "../../../template/template.cpp"
#include "../../../data-structure/segtree/li-chao-tree.hpp"
int main() {
int N, Q;
cin >> N >> Q;
vector<ll> xs;
vector<tuple<ll, ll, ll, ll>> segs(N);
REP(i, N) {
ll l, r, a, b;
cin >> l >> r >> a >> b;
segs[i] = {l, r, a, b};
xs.push_back(l);
xs.push_back(r);
}
vector<tuple<int, ll, ll, ll, ll>> qs(Q);
REP(i, Q) {
int t;
cin >> t;
if(t == 0) {
ll l, r, a, b;
cin >> l >> r >> a >> b;
qs[i] = {t, l, r, a, b};
xs.push_back(l);
xs.push_back(r);
} else {
ll x;
cin >> x;
qs[i] = {t, x, -1, -1, -1};
xs.push_back(x);
}
}
LiChaoTree<ll, LLINF> lc(xs);
for(const auto& [l, r, a, b] : segs) lc.add_segment(a, b, l, r);
for(const auto& [t, l, r, a, b] : qs) {
if(t == 0) {
lc.add_segment(a, b, l, r);
} else {
ll ans = lc.get_min(l);
if(ans == LLINF) {
cout << "INFINITY\n";
} else {
cout << lc.get_min(l) << '\n';
}
}
}
}
#line 1 "test/library-checker/data-structure/segment-add-get-min.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/segment_add_get_min"
#line 1 "template/template.cpp"
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
// input output utils
namespace siro53_io {
// https://maspypy.github.io/library/other/io_old.hpp
struct has_val_impl {
template <class T>
static auto check(T &&x) -> decltype(x.val(), std::true_type{});
template <class T> static auto check(...) -> std::false_type;
};
template <class T>
class has_val : public decltype(has_val_impl::check<T>(std::declval<T>())) {
};
// debug
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void dump(const T t) {
cerr << t;
}
template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
void dump(const T t) {
cerr << t;
}
template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
void dump(const T &t) {
cerr << t.val();
}
void dump(__int128_t n) {
if(n == 0) {
cerr << '0';
return;
} else if(n < 0) {
cerr << '-';
n = -n;
}
string s;
while(n > 0) {
s += (char)('0' + n % 10);
n /= 10;
}
reverse(s.begin(), s.end());
cerr << s;
}
void dump(const string &s) { cerr << s; }
void dump(const char *s) {
int n = (int)strlen(s);
for(int i = 0; i < n; i++) cerr << s[i];
}
template <class T1, class T2> void dump(const pair<T1, T2> &p) {
cerr << '(';
dump(p.first);
cerr << ',';
dump(p.second);
cerr << ')';
}
template <class T> void dump(const vector<T> &v) {
cerr << '{';
for(int i = 0; i < (int)v.size(); i++) {
dump(v[i]);
if(i < (int)v.size() - 1) cerr << ',';
}
cerr << '}';
}
template <class T> void dump(const set<T> &s) {
cerr << '{';
for(auto it = s.begin(); it != s.end(); it++) {
dump(*it);
if(next(it) != s.end()) cerr << ',';
}
cerr << '}';
}
template <class Key, class Value> void dump(const map<Key, Value> &mp) {
cerr << '{';
for(auto it = mp.begin(); it != mp.end(); it++) {
dump(*it);
if(next(it) != mp.end()) cerr << ',';
}
cerr << '}';
}
template <class Key, class Value>
void dump(const unordered_map<Key, Value> &mp) {
cerr << '{';
for(auto it = mp.begin(); it != mp.end(); it++) {
dump(*it);
if(next(it) != mp.end()) cerr << ',';
}
cerr << '}';
}
template <class T> void dump(const deque<T> &v) {
cerr << '{';
for(int i = 0; i < (int)v.size(); i++) {
dump(v[i]);
if(i < (int)v.size() - 1) cerr << ',';
}
cerr << '}';
}
template <class T> void dump(queue<T> q) {
cerr << '{';
while(!q.empty()) {
dump(q.front());
if((int)q.size() > 1) cerr << ',';
q.pop();
}
cerr << '}';
}
void debug_print() { cerr << endl; }
template <class Head, class... Tail>
void debug_print(const Head &h, const Tail &...t) {
dump(h);
if(sizeof...(Tail)) dump(' ');
debug_print(t...);
}
// print
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void print_single(const T t) {
cout << t;
}
template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
void print_single(const T t) {
cout << t;
}
template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
void print_single(const T t) {
cout << t.val();
}
void print_single(__int128_t n) {
if(n == 0) {
cout << '0';
return;
} else if(n < 0) {
cout << '-';
n = -n;
}
string s;
while(n > 0) {
s += (char)('0' + n % 10);
n /= 10;
}
reverse(s.begin(), s.end());
cout << s;
}
void print_single(const string &s) { cout << s; }
void print_single(const char *s) {
int n = (int)strlen(s);
for(int i = 0; i < n; i++) cout << s[i];
}
template <class T1, class T2> void print_single(const pair<T1, T2> &p) {
print_single(p.first);
cout << ' ';
print_single(p.second);
}
template <class T> void print_single(const vector<T> &v) {
for(int i = 0; i < (int)v.size(); i++) {
print_single(v[i]);
if(i < (int)v.size() - 1) cout << ' ';
}
}
template <class T> void print_single(const set<T> &s) {
for(auto it = s.begin(); it != s.end(); it++) {
print_single(*it);
if(next(it) != s.end()) cout << ' ';
}
}
template <class T> void print_single(const deque<T> &v) {
for(int i = 0; i < (int)v.size(); i++) {
print_single(v[i]);
if(i < (int)v.size() - 1) cout << ' ';
}
}
template <class T> void print_single(queue<T> q) {
while(!q.empty()) {
print_single(q.front());
if((int)q.size() > 1) cout << ' ';
q.pop();
}
}
void print() { cout << '\n'; }
template <class Head, class... Tail>
void print(const Head &h, const Tail &...t) {
print_single(h);
if(sizeof...(Tail)) print_single(' ');
print(t...);
}
// input
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void input_single(T &t) {
cin >> t;
}
template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
void input_single(T &t) {
cin >> t;
}
template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
void input_single(T &t) {
cin >> t;
}
void input_single(__int128_t &n) {
string s;
cin >> s;
if(s == "0") {
n = 0;
return;
}
bool is_minus = false;
if(s[0] == '-') {
s = s.substr(1);
is_minus = true;
}
n = 0;
for(int i = 0; i < (int)s.size(); i++) n = n * 10 + (int)(s[i] - '0');
if(is_minus) n = -n;
}
void input_single(string &s) { cin >> s; }
template <class T1, class T2> void input_single(pair<T1, T2> &p) {
input_single(p.first);
input_single(p.second);
}
template <class T> void input_single(vector<T> &v) {
for(auto &e : v) input_single(e);
}
void input() {}
template <class Head, class... Tail> void input(Head &h, Tail &...t) {
input_single(h);
input(t...);
}
}; // namespace siro53_io
#ifdef DEBUG
#define debug(...) \
cerr << __LINE__ << " [" << #__VA_ARGS__ << "]: ", debug_print(__VA_ARGS__)
#else
#define debug(...) (void(0))
#endif
// io setup
struct Setup {
Setup() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
}
} __Setup;
using namespace siro53_io;
// types
using ll = long long;
using i128 = __int128_t;
// input macros
#define INT(...) \
int __VA_ARGS__; \
input(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
input(__VA_ARGS__)
#define STRING(...) \
string __VA_ARGS__; \
input(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
input(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
input(__VA_ARGS__)
#define LD(...) \
long double __VA_ARGS__; \
input(__VA_ARGS__)
#define UINT(...) \
unsigned int __VA_ARGS__; \
input(__VA_ARGS__)
#define ULL(...) \
unsigned long long __VA_ARGS__; \
input(__VA_ARGS__)
#define VEC(name, type, len) \
vector<type> name(len); \
input(name);
#define VEC2(name, type, len1, len2) \
vector name(len1, vector<type>(len2)); \
input(name);
// other macros
// https://trap.jp/post/1224/
#define OVERLOAD3(_1, _2, _3, name, ...) name
#define ALL(v) (v).begin(), (v).end()
#define RALL(v) (v).rbegin(), (v).rend()
#define REP1(i, n) for(int i = 0; i < int(n); i++)
#define REP2(i, a, b) for(int i = (a); i < int(b); i++)
#define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define SORT(v) sort(ALL(v))
#define RSORT(v) sort(RALL(v))
#define UNIQUE(v) \
sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end()), v.shrink_to_fit()
#define REV(v) reverse(ALL(v))
#define SZ(v) ((int)(v).size())
#define MIN(v) (*min_element(ALL(v)))
#define MAX(v) (*max_element(ALL(v)))
// util const
const int INF = 1 << 30;
const ll LLINF = 1LL << 60;
constexpr int MOD = 1000000007;
constexpr int MOD2 = 998244353;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
// util functions
void Case(int i) { cout << "Case #" << i << ": "; }
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
template <class T> inline bool chmax(T &a, T b) {
return (a < b ? a = b, true : false);
}
template <class T> inline bool chmin(T &a, T b) {
return (a > b ? a = b, true : false);
}
template <class T, int dim>
auto make_vector_impl(vector<int>& sizes, const T &e) {
if constexpr(dim == 1) {
return vector(sizes[0], e);
} else {
int n = sizes[dim - 1];
sizes.pop_back();
return vector(n, make_vector_impl<T, dim - 1>(sizes, e));
}
}
template <class T, int dim>
auto make_vector(const int (&sizes)[dim], const T &e = T()) {
vector<int> s(dim);
for(int i = 0; i < dim; i++) s[i] = sizes[dim - i - 1];
return make_vector_impl<T, dim>(s, e);
}
vector<int> iota_gen(int n, int start = 0) {
vector<int> ord(n);
iota(ord.begin(), ord.end(), start);
return ord;
}
template<typename T>
vector<int> ord_sort(const vector<T>& v, bool greater = false) {
auto ord = iota_gen((int)v.size());
sort(ALL(ord), [&](int i, int j) {
if(greater) return v[i] > v[j];
return v[i] < v[j];
});
return ord;
}
#pragma endregion Macros
#line 2 "data-structure/segtree/li-chao-tree.hpp"
#line 7 "data-structure/segtree/li-chao-tree.hpp"
template <typename T, T inf>
class LiChaoTree {
public:
LiChaoTree() = default;
explicit LiChaoTree(const std::vector<T>& x): xs(x) {
std::sort(xs.begin(), xs.end());
xs.erase(std::unique(xs.begin(), xs.end()), xs.end());
n = (int)xs.size();
sz = 1;
while(sz < n) sz <<= 1;
while((int)xs.size() < sz) xs.emplace_back(xs.back() + 1);
node.resize(sz * 2, Line(T(0), inf));
}
// 直線 ax + b を追加
void add_line(T a, T b) {
update(a, b, 0, sz, 1);
}
// 線分 ax + b (x_l <= x < x_r) を追加
void add_segment(T a, T b, T x_l, T x_r) {
int l = std::lower_bound(xs.begin(), xs.end(), x_l) - xs.begin();
int r = std::lower_bound(xs.begin(), xs.end(), x_r) - xs.begin();
l += sz;
r += sz;
int width = 1, seg_idx_left = sz;
while(l < r) {
if(l & 1) {
int L = (l - seg_idx_left) * width;
int R = L + width;
update(a, b, L, R, l);
l++;
}
if(r & 1) {
r--;
int L = (r - seg_idx_left) * width;
int R = L + width;
update(a, b, L, R, r);
}
l >>= 1;
r >>= 1;
width <<= 1;
seg_idx_left >>= 1;
}
}
// min_{i} (a_i * x + b) を求める
T get_min(T x) {
int pos = std::lower_bound(xs.begin(), xs.end(), x) - xs.begin();
assert(0 <= pos and pos < sz);
pos += sz;
T ret = node[pos].eval(x);
while(pos > 1) {
pos >>= 1;
ret = std::min(ret, node[pos].eval(x));
}
return ret;
}
private:
struct Line {
T a, b;
Line(T a, T b): a(a), b(b) {}
inline T eval(T x) const { return (a * x + b); }
};
std::vector<T> xs;
std::vector<Line> node;
int n, sz;
void update(T a, T b, int l, int r, int pos) {
Line new_line(a, b);
while(1) {
bool is_over_l = (new_line.eval(xs[l]) >= node[pos].eval(xs[l]));
bool is_over_r = (new_line.eval(xs[r-1]) >= node[pos].eval(xs[r-1]));
if(is_over_l == is_over_r) {
if(!is_over_l) node[pos] = new_line;
break;
}
int mid = (l + r) >> 1;
bool is_over_mid = (new_line.eval(xs[mid]) >= node[pos].eval(xs[mid]));
if(!is_over_l and is_over_r) {
if(is_over_mid) {
r = mid;
pos = (pos << 1);
} else {
std::swap(new_line, node[pos]);
l = mid;
pos = (pos << 1) | 1;
}
} else {
if(is_over_mid) {
l = mid;
pos = (pos << 1) | 1;
} else {
std::swap(new_line, node[pos]);
r = mid;
pos = (pos << 1);
}
}
}
}
};
#line 4 "test/library-checker/data-structure/segment-add-get-min.test.cpp"
int main() {
int N, Q;
cin >> N >> Q;
vector<ll> xs;
vector<tuple<ll, ll, ll, ll>> segs(N);
REP(i, N) {
ll l, r, a, b;
cin >> l >> r >> a >> b;
segs[i] = {l, r, a, b};
xs.push_back(l);
xs.push_back(r);
}
vector<tuple<int, ll, ll, ll, ll>> qs(Q);
REP(i, Q) {
int t;
cin >> t;
if(t == 0) {
ll l, r, a, b;
cin >> l >> r >> a >> b;
qs[i] = {t, l, r, a, b};
xs.push_back(l);
xs.push_back(r);
} else {
ll x;
cin >> x;
qs[i] = {t, x, -1, -1, -1};
xs.push_back(x);
}
}
LiChaoTree<ll, LLINF> lc(xs);
for(const auto& [l, r, a, b] : segs) lc.add_segment(a, b, l, r);
for(const auto& [t, l, r, a, b] : qs) {
if(t == 0) {
lc.add_segment(a, b, l, r);
} else {
ll ans = lc.get_min(l);
if(ans == LLINF) {
cout << "INFINITY\n";
} else {
cout << lc.get_min(l) << '\n';
}
}
}
}