This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://yukicoder.me/problems/no/206"
#include "../../template/template.cpp"
#include "../../math/convolution/fft.hpp"
int main() {
int L, M, N;
cin >> L >> M >> N;
vector<double> fa(N+1, 0), fb(N+1, 0);
REP(i, L) {
int a;
cin >> a;
fa[a] += 1;
}
REP(i, M) {
int b;
cin >> b;
fb[N - b] += 1;
}
auto c = fft::convolution<double>(fa, fb);
int Q;
cin >> Q;
REP(v, Q) cout << (ll)(c[N + v] + 0.5) << '\n';
}
#line 1 "test/yukicoder/yuki440.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/206"
#line 1 "template/template.cpp"
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
// input output utils
namespace siro53_io {
// https://maspypy.github.io/library/other/io_old.hpp
struct has_val_impl {
template <class T>
static auto check(T &&x) -> decltype(x.val(), std::true_type{});
template <class T> static auto check(...) -> std::false_type;
};
template <class T>
class has_val : public decltype(has_val_impl::check<T>(std::declval<T>())) {
};
// debug
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void dump(const T t) {
cerr << t;
}
template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
void dump(const T t) {
cerr << t;
}
template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
void dump(const T &t) {
cerr << t.val();
}
void dump(__int128_t n) {
if(n == 0) {
cerr << '0';
return;
} else if(n < 0) {
cerr << '-';
n = -n;
}
string s;
while(n > 0) {
s += (char)('0' + n % 10);
n /= 10;
}
reverse(s.begin(), s.end());
cerr << s;
}
void dump(const string &s) { cerr << s; }
void dump(const char *s) {
int n = (int)strlen(s);
for(int i = 0; i < n; i++) cerr << s[i];
}
template <class T1, class T2> void dump(const pair<T1, T2> &p) {
cerr << '(';
dump(p.first);
cerr << ',';
dump(p.second);
cerr << ')';
}
template <class T> void dump(const vector<T> &v) {
cerr << '{';
for(int i = 0; i < (int)v.size(); i++) {
dump(v[i]);
if(i < (int)v.size() - 1) cerr << ',';
}
cerr << '}';
}
template <class T> void dump(const set<T> &s) {
cerr << '{';
for(auto it = s.begin(); it != s.end(); it++) {
dump(*it);
if(next(it) != s.end()) cerr << ',';
}
cerr << '}';
}
template <class Key, class Value> void dump(const map<Key, Value> &mp) {
cerr << '{';
for(auto it = mp.begin(); it != mp.end(); it++) {
dump(*it);
if(next(it) != mp.end()) cerr << ',';
}
cerr << '}';
}
template <class Key, class Value>
void dump(const unordered_map<Key, Value> &mp) {
cerr << '{';
for(auto it = mp.begin(); it != mp.end(); it++) {
dump(*it);
if(next(it) != mp.end()) cerr << ',';
}
cerr << '}';
}
template <class T> void dump(const deque<T> &v) {
cerr << '{';
for(int i = 0; i < (int)v.size(); i++) {
dump(v[i]);
if(i < (int)v.size() - 1) cerr << ',';
}
cerr << '}';
}
template <class T> void dump(queue<T> q) {
cerr << '{';
while(!q.empty()) {
dump(q.front());
if((int)q.size() > 1) cerr << ',';
q.pop();
}
cerr << '}';
}
void debug_print() { cerr << endl; }
template <class Head, class... Tail>
void debug_print(const Head &h, const Tail &...t) {
dump(h);
if(sizeof...(Tail)) dump(' ');
debug_print(t...);
}
// print
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void print_single(const T t) {
cout << t;
}
template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
void print_single(const T t) {
cout << t;
}
template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
void print_single(const T t) {
cout << t.val();
}
void print_single(__int128_t n) {
if(n == 0) {
cout << '0';
return;
} else if(n < 0) {
cout << '-';
n = -n;
}
string s;
while(n > 0) {
s += (char)('0' + n % 10);
n /= 10;
}
reverse(s.begin(), s.end());
cout << s;
}
void print_single(const string &s) { cout << s; }
void print_single(const char *s) {
int n = (int)strlen(s);
for(int i = 0; i < n; i++) cout << s[i];
}
template <class T1, class T2> void print_single(const pair<T1, T2> &p) {
print_single(p.first);
cout << ' ';
print_single(p.second);
}
template <class T> void print_single(const vector<T> &v) {
for(int i = 0; i < (int)v.size(); i++) {
print_single(v[i]);
if(i < (int)v.size() - 1) cout << ' ';
}
}
template <class T> void print_single(const set<T> &s) {
for(auto it = s.begin(); it != s.end(); it++) {
print_single(*it);
if(next(it) != s.end()) cout << ' ';
}
}
template <class T> void print_single(const deque<T> &v) {
for(int i = 0; i < (int)v.size(); i++) {
print_single(v[i]);
if(i < (int)v.size() - 1) cout << ' ';
}
}
template <class T> void print_single(queue<T> q) {
while(!q.empty()) {
print_single(q.front());
if((int)q.size() > 1) cout << ' ';
q.pop();
}
}
void print() { cout << '\n'; }
template <class Head, class... Tail>
void print(const Head &h, const Tail &...t) {
print_single(h);
if(sizeof...(Tail)) print_single(' ');
print(t...);
}
// input
template <class T, enable_if_t<is_integral<T>::value, int> = 0>
void input_single(T &t) {
cin >> t;
}
template <class T, enable_if_t<is_floating_point<T>::value, int> = 0>
void input_single(T &t) {
cin >> t;
}
template <class T, typename enable_if<has_val<T>::value>::type * = nullptr>
void input_single(T &t) {
cin >> t;
}
void input_single(__int128_t &n) {
string s;
cin >> s;
if(s == "0") {
n = 0;
return;
}
bool is_minus = false;
if(s[0] == '-') {
s = s.substr(1);
is_minus = true;
}
n = 0;
for(int i = 0; i < (int)s.size(); i++) n = n * 10 + (int)(s[i] - '0');
if(is_minus) n = -n;
}
void input_single(string &s) { cin >> s; }
template <class T1, class T2> void input_single(pair<T1, T2> &p) {
input_single(p.first);
input_single(p.second);
}
template <class T> void input_single(vector<T> &v) {
for(auto &e : v) input_single(e);
}
void input() {}
template <class Head, class... Tail> void input(Head &h, Tail &...t) {
input_single(h);
input(t...);
}
}; // namespace siro53_io
#ifdef DEBUG
#define debug(...) \
cerr << __LINE__ << " [" << #__VA_ARGS__ << "]: ", debug_print(__VA_ARGS__)
#else
#define debug(...) (void(0))
#endif
// io setup
struct Setup {
Setup() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
}
} __Setup;
using namespace siro53_io;
// types
using ll = long long;
using i128 = __int128_t;
// input macros
#define INT(...) \
int __VA_ARGS__; \
input(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
input(__VA_ARGS__)
#define STRING(...) \
string __VA_ARGS__; \
input(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
input(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
input(__VA_ARGS__)
#define LD(...) \
long double __VA_ARGS__; \
input(__VA_ARGS__)
#define UINT(...) \
unsigned int __VA_ARGS__; \
input(__VA_ARGS__)
#define ULL(...) \
unsigned long long __VA_ARGS__; \
input(__VA_ARGS__)
#define VEC(name, type, len) \
vector<type> name(len); \
input(name);
#define VEC2(name, type, len1, len2) \
vector name(len1, vector<type>(len2)); \
input(name);
// other macros
// https://trap.jp/post/1224/
#define OVERLOAD3(_1, _2, _3, name, ...) name
#define ALL(v) (v).begin(), (v).end()
#define RALL(v) (v).rbegin(), (v).rend()
#define REP1(i, n) for(int i = 0; i < int(n); i++)
#define REP2(i, a, b) for(int i = (a); i < int(b); i++)
#define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define SORT(v) sort(ALL(v))
#define RSORT(v) sort(RALL(v))
#define UNIQUE(v) \
sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end()), v.shrink_to_fit()
#define REV(v) reverse(ALL(v))
#define SZ(v) ((int)(v).size())
#define MIN(v) (*min_element(ALL(v)))
#define MAX(v) (*max_element(ALL(v)))
// util const
const int INF = 1 << 30;
const ll LLINF = 1LL << 60;
constexpr int MOD = 1000000007;
constexpr int MOD2 = 998244353;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
// util functions
void Case(int i) { cout << "Case #" << i << ": "; }
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
template <class T> inline bool chmax(T &a, T b) {
return (a < b ? a = b, true : false);
}
template <class T> inline bool chmin(T &a, T b) {
return (a > b ? a = b, true : false);
}
template <class T, int dim>
auto make_vector_impl(vector<int>& sizes, const T &e) {
if constexpr(dim == 1) {
return vector(sizes[0], e);
} else {
int n = sizes[dim - 1];
sizes.pop_back();
return vector(n, make_vector_impl<T, dim - 1>(sizes, e));
}
}
template <class T, int dim>
auto make_vector(const int (&sizes)[dim], const T &e = T()) {
vector<int> s(dim);
for(int i = 0; i < dim; i++) s[i] = sizes[dim - i - 1];
return make_vector_impl<T, dim>(s, e);
}
vector<int> iota_gen(int n, int start = 0) {
vector<int> ord(n);
iota(ord.begin(), ord.end(), start);
return ord;
}
template<typename T>
vector<int> ord_sort(const vector<T>& v, bool greater = false) {
auto ord = iota_gen((int)v.size());
sort(ALL(ord), [&](int i, int j) {
if(greater) return v[i] > v[j];
return v[i] < v[j];
});
return ord;
}
#pragma endregion Macros
#line 2 "math/convolution/fft.hpp"
#line 7 "math/convolution/fft.hpp"
namespace fft {
template <typename D> struct Complex {
D x, y;
Complex(): x(0), y(0) {};
Complex(D x, D y) : x(x), y(y) {}
Complex &operator+=(const Complex &c) {
x += c.x;
y += c.y;
return (*this);
}
Complex &operator-=(const Complex &c) {
x -= c.x;
y -= c.y;
return (*this);
}
Complex &operator*=(const Complex &c) {
D nx = x * c.x - y * c.y;
D ny = x * c.y + y * c.x;
x = nx, y = ny;
return (*this);
}
Complex &operator/=(const Complex& c) {
D nx = (x * c.x + y * c.y) / (c.x * c.x + c.y * c.y);
D ny = (y * c.x - x * c.y) / (c.x * c.x + c.y * c.y);
x = nx, y = ny;
return (*this);
}
Complex operator-() const { return Complex(-x, -y); }
Complex operator+(const Complex &c) const { return Complex(*this) += c; }
Complex operator-(const Complex &c) const { return Complex(*this) -= c; }
Complex operator*(const Complex &c) const { return Complex(*this) *= c; }
Complex operator/(const Complex &c) const { return Complex(*this) /= c; }
};
template<typename D>
constexpr const D PI = std::acos(D(-1));
template<typename D>
inline Complex<D> omega(int k, int n) {
return Complex<D>(std::cos(D(k) * 2 * PI<D> / n), std::sin(D(k) * 2 * PI<D> / n));
}
inline int revbit(int mask, int bitlen) {
int res = 0;
while(bitlen--) {
res = (res << 1) | (mask & 1);
mask >>= 1;
}
return res;
}
template<typename D>
void fft(std::vector<Complex<D>>& a, int bitlen) {
int n = (int)a.size();
int len = n;
while(len > 1) {
for(int i = 0; i < n; i += len) {
int t = len >> 1;
for(int j = 0; j < t; j++) {
int p = i + j;
auto l = a[p] + a[p + t];
auto r = (a[p] - a[p + t]) * omega<D>(j, len);
a[p] = l;
a[p + t] = r;
}
}
len >>= 1;
}
for(int i = 0; i < n; i++) {
int j = revbit(i, bitlen);
if(i < j) std::swap(a[i], a[j]);
}
}
template<typename D>
void ifft(std::vector<Complex<D>>& a, int bitlen) {
int n = (int)a.size();
for(int i = 0; i < n; i++) {
int j = revbit(i, bitlen);
if(i < j) std::swap(a[i], a[j]);
}
int len = 2;
while(len <= n) {
for(int i = 0; i < n; i += len) {
int t = len >> 1;
for(int j = 0; j < t; j++) {
int p = i + j;
auto l = a[p] + a[p + t] * omega<D>(-j, len);
auto r = a[p] - a[p + t] * omega<D>(-j, len);
a[p] = l;
a[p + t] = r;
}
}
len <<= 1;
}
for(int i = 0; i < n; i++) a[i] /= Complex<D>(n, 0);
}
template<typename D>
std::vector<D> convolution(const std::vector<D>& a, const std::vector<D>& b) {
int m = (int)a.size() + (int)b.size() - 1;
int n = 1, bitlen = 0;
while(n < m) {
n <<= 1;
bitlen++;
}
std::vector<Complex<D>> A(n), B(n);
for(int i = 0; i < (int)a.size(); i++) A[i] = Complex<D>(a[i], 0);
for(int i = 0; i < (int)b.size(); i++) B[i] = Complex<D>(b[i], 0);
fft<D>(A, bitlen);
fft<D>(B, bitlen);
for(int i = 0; i < n; i++) A[i] *= B[i];
ifft<D>(A, bitlen);
std::vector<D> res(m);
for(int i = 0; i < m; i++) res[i] = A[i].x;
return res;
}
}; // namespace fft
#line 4 "test/yukicoder/yuki440.test.cpp"
int main() {
int L, M, N;
cin >> L >> M >> N;
vector<double> fa(N+1, 0), fb(N+1, 0);
REP(i, L) {
int a;
cin >> a;
fa[a] += 1;
}
REP(i, M) {
int b;
cin >> b;
fb[N - b] += 1;
}
auto c = fft::convolution<double>(fa, fb);
int Q;
cin >> Q;
REP(v, Q) cout << (ll)(c[N + v] + 0.5) << '\n';
}